Previsão por técnicas de suavização Este site faz parte dos objetos de aprendizado de E-Labs JavaScript para a tomada de decisões. Outro JavaScript nesta série é categorizado em diferentes áreas de aplicativos na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente à coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são o alisamento. Essas técnicas, quando aplicadas corretamente, revelam mais claramente as tendências subjacentes. Digite as séries temporais em ordem de linha em sequência, a partir do canto superior esquerdo e o (s) parâmetro (s), e clique no botão Calcular para obter uma previsão em um período de antecedência. As caixas em branco não estão incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados, use a tecla Tab na seta ou entre as chaves. Características das séries temporais, que podem ser reveladas examinando seu gráfico. Com os valores previstos, e o comportamento residual, modelagem de previsão de condição. Médias móveis: as médias médias classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar as séries temporais mais suaves ou mesmo para enfatizar certos componentes informativos contidos nas séries temporais. Suavização exponencial: Este é um esquema muito popular para produzir uma série de tempo suavizada. Considerando que, nas Médias móveis, as observações passadas são ponderadas de forma igual, Suavização exponencial atribui pesos exponencialmente decrescentes à medida que a observação envelhece. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Suavizado Exponencial Duplo é melhor nas tendências de manuseio. O Suavização Exponencial Triplo é melhor em lidar com as tendências da parábola. Uma média móvel ponderada exponencialmente com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,04878. Holmes Linear Exponential Suavização: Suponha que as séries temporais não sejam sazonais, mas que mostram a tendência de exibição. O método Holts estima tanto o nível atual quanto a tendência atual. Observe que a média móvel simples é um caso especial do suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados empresariais, um parâmetro Alpha menor que 0.40 geralmente é eficaz. No entanto, pode-se realizar uma busca em grade do espaço dos parâmetros, com 0,1 a 0,9, com incrementos de 0,1. Então, o melhor alfa tem o menor erro absoluto médio (erro MA). Como comparar vários métodos de suavização: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla é o uso de comparação visual de várias previsões para avaliar a precisão e escolher entre os vários métodos de previsão. Nesta abordagem, um deve traçar (usando, por exemplo, Excel) no mesmo gráfico, os valores originais de uma variável de séries temporais e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões passadas por técnicas de suavização JavaScript para obter os valores de previsão passados com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ideais ótimos, ou mesmo próximos, por testes e erros para os parâmetros. O alisamento exponencial único enfatiza a perspectiva de curto alcance que define o nível para a última observação e baseia-se na condição de que não haja nenhuma tendência. A regressão linear, que se adapta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa o longo alcance, que está condicionado à tendência básica. O alisamento exponencial linear Holts captura informações sobre a tendência recente. Os parâmetros no modelo Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande e as tendências-parâmetro devem ser aumentadas se a direção recente da tendência é suportada pelos fatores causais. Previsão de curto prazo: observe que cada JavaScript nesta página fornece uma previsão de um passo a frente. Para obter uma previsão em duas etapas. Simplesmente adicione o valor previsto ao final de seus dados da série temporal e clique no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões necessárias a curto prazo. Médias móveis: o básico Ao longo dos anos, os técnicos encontraram dois problemas com a média móvel simples. O primeiro problema reside no prazo da média móvel (MA). A maioria dos analistas técnicos acredita que a ação de preço. O preço das ações de abertura ou fechamento, não é suficiente para depender para prever corretamente comprar ou vender sinais da ação de cruzamento de MAs. Para resolver este problema, os analistas agora atribuem mais peso aos dados de preços mais recentes usando a média móvel suavemente exponencial (EMA). (Saiba mais em Explorando a Média de Movimento Exponencialmente Pesada). Exemplo Por exemplo, usando um MA de 10 dias, um analista tomaria o preço de fechamento do 10º dia e multiplicaria esse número por 10, o nono dia por nove, o oitavo Dia por oito e assim por diante para o primeiro do MA. Uma vez que o total foi determinado, o analista dividiria o número pela adição dos multiplicadores. Se você adicionar os multiplicadores do exemplo MA de 10 dias, o número é 55. Esse indicador é conhecido como a média móvel ponderada linearmente. (Para leitura relacionada, verifique as Médias móveis simples, faça as tendências se destacarem.) Muitos técnicos são crentes firmes na média móvel suavemente exponencial (EMA). Este indicador foi explicado de muitas maneiras diferentes que confunde estudantes e investidores. Talvez a melhor explicação venha de John J. Murphys Análise Técnica dos Mercados Financeiros (publicado pelo New York Institute of Finance, 1999): a média móvel suavemente exponencial aborda os dois problemas associados à média móvel simples. Primeiro, a média exponencialmente suavizada atribui um peso maior aos dados mais recentes. Portanto, é uma média móvel ponderada. Mas, enquanto atribui menor importância aos dados do preço passado, ele inclui no cálculo de todos os dados da vida útil do instrumento. Além disso, o usuário pode ajustar a ponderação para dar maior ou menor peso ao preço dos dias mais recentes, que é adicionado a uma porcentagem do valor dos dias anteriores. A soma de ambos os valores percentuais é de até 100. Por exemplo, o preço dos últimos dias pode ser atribuído a um peso de 10 (.10), que é adicionado aos dias anteriores com peso de 90 (.90). Isso dá o último dia 10 da ponderação total. Este seria o equivalente a uma média de 20 dias, ao dar ao preço dos últimos dias um valor menor de 5 (0,05). Figura 1: Média em Movimento Suavizado Exponencialmente O gráfico acima mostra o Índice Composto Nasdaq desde a primeira semana de agosto de 2000 até 1º de junho de 2001. Como você pode ver claramente, a EMA, que neste caso está usando os dados de preço de fechamento ao longo de um Período de nove dias, tem sinais de venda definitivos no 8 de setembro (marcado por uma seta para baixo preta). Este foi o dia em que o índice caiu abaixo do nível de 4.000. A segunda seta preta mostra outra perna para baixo que os técnicos estavam realmente esperando. A Nasdaq não conseguiu gerar volume e interesse suficientes dos investidores de varejo para quebrar a marca de 3.000. Ele então mergulhou de novo para baixo em 1619.58 em 4 de abril. A tendência de alta de 12 de abril é marcada por uma seta. Aqui, o índice fechou em 1.961,46, e os técnicos começaram a ver os gerentes de fundos institucionais começar a retirar algumas pechinchas como a Cisco, a Microsoft e algumas das questões relacionadas à energia. (Leia nossos artigos relacionados: Envelopes médios móveis: Refinando uma ferramenta de troca popular e um salto médio em movimento). Um atalho para estimar o número de anos necessários para dobrar seu dinheiro a uma determinada taxa de retorno anual (ver anual composto. A taxa de juros cobrada Em um empréstimo ou realizado em um investimento durante um período de tempo específico. A maioria das taxas de juros são. Um título de grau de investimento apoiado por um pool de títulos, empréstimos e outros ativos. Os CDOs não se especializam em um tipo de dívida. Que o primeiro influxo de capital de investimento é entregue a um projeto ou empresa. Isto marca quando o capital é. Leonardo Fibonacci era um matemático italiano nascido no século 12. Ele é conhecido por ter descoberto os quotFibonacci números, uma segurança com um preço Que é dependente ou derivado de um ou mais ativos subjacentes.
 
No comments:
Post a Comment